I N ) Twme———y

. | Wy

PRI

. g

FINAL REPORT
EE-SSL-1767

THERMAL MAPPING OF THE LUNAR SURFACE

By

W. L. Raine.

September 1973

Prepared For

ELECTROMAGNETIC AND SOLID STATE PHYSICS DIVISION
SPACE SCIENCES LABORATORY
GEORGE C., MARSHALL SPACE FLIGHT CENTER

Contract No. NAS8-26343

Prepared By

ELECTRONICS AND ENGINEERING
TELEDYNE BROWN ENGINEERING
HUNTSVILLE, ALABAMA

RS, A B Aot - bla e 15w 1



PSRRI WNPIRE

PRI gy

WS P TR

i SR
Y e

}

[ N
[ 2o

[y w’, [
oy »

}

X wu’ [ IS
whea [ O

[ ™
| 2

F
reond

B sl
R

| S |
e |

ot

| T
& o

$sumd
[ 2o ]

-

=

<
L

ABSTRACT

A program of lunar infrared radiometry which uses large-area
scanning is described. Procedures for atmospheric attenuation correc-
tion and data reduction to temperature by relative radiometry are out-
lined. Flow charts of the computer data reduction program are included,
which also contain the astrometric analysis from ephemeral data. The
scan data of ten evenings in 1971 and 1972, taken in the 10- to 12-
micrometer window, are presented as isothermal contour maps of the
lunar disc. More than 160 areas of anomalous thermal emission have
been found in the lunar darkside data. A table is presented listing these
regions, Eclipse cooling curves measured in the same wavelength band
for seven lunar regions during the eclipse of February 10, 1971, are
also presented. Exrors of the scan and eclipse data are calculated from

accuracy estimates of the parameters.
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1. INTRGDUCTION

Infrared radiometric measurements of lunar heat radiation
began in 1929 with the measurements of Pettit and Nicholson (Ref. 1).
Their instrument incorporated a vacuum thermocouple attached to
the 100-inch reflector at Mt, Wilson. These workers successively
measured the entire lunar radiation transmitted by the atmosphere, and
the radiation transmitted by a microscope cover glass. The difference
in tuese measurements was assumed to be entirely heat radiation. Their
effective wavelength band esszntially covered the region from 8 to 14
micrometers. Their observations included a number of scans across

the disc, measurements of the subsolar point, and eclipse measurements.

The first isothermal maps of the daytime lunar surface were
constructed in 1960 by Geoffrion, Korner, and Sinton (Ref. 2) from
measurements with a pyrometer in the spectral band from 8.0 to 9.5
micrometers. Eclipse measurements of the crater Tycho were also

made by Sinton (Ref, 3).

The most extensive measurements of the illuminated lunar
surface have been made by Saari and Shorthill (Ref. 4). Their radio-
meter contained a mercury-doped germanium photodetector working
in the band from 10 to 12 micrometers. These authors have completely
mapped the daytime lunar surface, both in the infrared and, with a
phototube. in the visual region, at selected phases throughout a luna-
tion. Their measurements have also heen presented as isothermal
contour charts. Their data are of high spatial resolution, and the
charts clearly show contours outlining specific features, Calculated
temperatures for the lunar subsolar point were used for their absolute

calibration.

1-1

gt



I

Largely because of the relatively low signal, somewhat fewer
measurements have been taken of the nighttime lunar surface. Measure-
ments have been made by Saari (Ref. 5), by Low at 20 micrometers
(Ref. 6), by Mendell and Low also at 20 mizrometers (Ref. 7), and by .
Murray and Wildey in the 8~ through l14-micrometer band (Ref., 8). B
This last group used a mercury-~doped germanium detector cooled to
liquid hvdrogen temperature. These authors have also constructed a
thermal contour chart of the nightt.me surface near last quarter phase

under rather low resolution (Ref. 9).

Measurements of the ter perature oi the lunar nighttime surface
are important in ascertaining the thermal environment to whicu instru~
meantation left on the Moon will be subjected. Such measurements are
more important than lunar daytime surface measurements in the defini-
tion of the thermophysical structure of the near surface layers. More
extensive r>diometric data of the lunar nighctime surface are clearly

needed,

For the past 4 years, Teledyne Brown Engineering has been

A snmtat 4 il 5, A

involved in the acquisition of such measurements in cooperation with

the Space Sciences Laboratory, MSFC (Refs. 10 through 17 and 26). The
dewar-detector system for these measurements was obtained from
Infrared Industries of Tucson, Arizona, and the radiometer was desigaed

and developed by Telcdyne Brown Engineering.

The radiometer uses dual germanium bolometric detectors
working in bands from 10 to 12 micrometers and from 17,7 to 25.0
micrometers. Most of the work to date has been in the 10~ to 12-
micrometer band. The radiometer has been used attached to a 30~
centimeter telescope in Huntsville, and also attached to a 1. 5-meter

telescope in Arizona.
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The thcory of measurement is simple. A measurement is
made of the lunar radiance in the wavelength band of the instrument.
Both infrared spectral bands lie at sufficiently long wavelengths that
scattered sunlight from the surface is negligible. The radiation
observed is, therefore, primarily lunar heat radiation. With the
assumption that this measured radiance is described by the Planck
Radiation Function, a corresponding temperature is calculated. The
termnperature obtained is, therefore, a brightness temperature, rather

than a color temperature.

Because of problems of diffraction of the radiation by the field
limiting apertures located within the dewar, and also because of align-
ment problems, it was decided to perform the absolute calibration of
the radiometer with the Moon as the source. The measurements of
Saari and Shorthill were used for this purpose. The astrometric

analysis was done according to the procedure of Ingrao (Ref. 18).

The results of the scan data are presented here as isothermal
contour charts. The lunar phases mapped and amounts of data for each

are presently incomplete, because of difficulties with the equipment and

weather.

Radiometric data were also taken during the total lunar eclipse
of February 10, 1971. Data in the 10.0- to 12.5-p band were recorded

for seven regions, and cooling curves are presented here for each.

The results presented here represent a culmination of the
efforts of a number of people. The author wishes to thank the following
persons, without whose help these results would have been impossible.

The first four named individuals especially have made major contributions.
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Mr., W. F. Fountain has been the coordinator for NASA for the
Project. He has worked tirelessly with the observational apparatus
and the telescope. Mr. M. W, Segewitz assembled the complete data
acquisition system, has helped in the acquisition of data, and has been
responsible for the continued operation of the apparatus. Mr. J. A.
Fountain has worked significantly at the telescope and with the lunar
photographs. The computer-reduction program was written by Mr,

J. Van Swearingen from flow charts supplied by the author, and he

nas been responsible for the complete computer reduction.

Mechanical design of the radiometer was performed by Mr.
R. Norton. The camera synchronization unit was constructed by

Mr. M, Deasy. Messrs. M. White, R. White, E. West, and Miss

S. Sneed have analyzed many of the lunar photographs and have supplied

the lunar reference point temperatures and the necessary ephemeral
data. Messrs. E. George, D. Montgomery, and J. Sanders assisted

in the compilation of the v ble of anomalies.
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2. THE RADIOMETER

The radiometer has been previously described in detail (Ref. 16).

Therefore, only a brief description is presented here.

An optical schematic of the instrument is shown in Figure 2-1.
The radiometer was designed to accept a cone of radiation of about
F/16, which is typical of Cassegrain telescopes. - Radiation from the
telescope eniers at the top of the figure. The 10~hertz chopper alter-
nately passes the lunar radiation into the dewar, or below to the visual
section of the instrument. The sky mirror reflects sky background
radiation into the dewar between chop cycles. The light entering the
visual section of the instrument passes first through the thick giass
image deflector plate, and is reflected by the focal plane mirror through
a lens reimaging system to the eyepiece or camera. A visual photo-
meter may be added as an accessory directly below the focal plane
mirror. Light is passed to this unit through a small hole in the coating

of that mirror.

The focal plane mirror has four fine wires glued to its surface
to serve as a crosshair, When the instrument is in use, this mirror is
carefully adjusted so that the crosshair is optically in precisely the
same position as the infrared detector. An x-y screw motion serves
as a coarse adjustment for this alignment, and the image deflector
plate provides the fine adjustment. Photographs made with the camera,
and also observation through the eyepiece, reveal the crosshair super-
posed on the lunar image, and these mark the exact position of the

detector field,

The dewa. contains dual germanium bolometric detectors cooled

by liquid helium. These detectors are each 0,5 millimeter in diameter,

T

el BB 2ottt




-

p— o ——

e ]

S ST R T SRR Y R D0 L PRI e

3031d3A3
ONIM3IA

— = R s

. T PR T NS S U L gt
T T Ak L LI T e oa gere W et moaas

3313W0IAVY 3HL 10 IILVWIHOS TWIILd0 “L-2 J¥N9ld

3801 OLOH4
Wi
SN37 AHEVS
¥3Ld
W3LSAS
HOHMIW ONIDVINITZH
X334 JLVYNHILIV  WILSAS
m ONISVINIZY 34N LYY
oo INV1d 1VD04
HOWHIW

ONILYOD
WANIANNTY NI 3T70H

"¥0O1l0373430 3IDVWI

{3718vAOW3Y)
HOHHIN AMS

(379VAOW3Y) _ faes 0
30HNOS NOILVESINYD ~HAAT .

#010313C

[
3UNLY3dV

Y¥3ddOHD
> ]
\|[ (318vACWaY)
\{ __30unos
\i  30N3y3d3y
NOILVIOVY NOILVIaGWVY
ANS HYNM

o e RN | o )y -8 [] . ] & ] a IR ] M. -
r&:ﬂ F.s“ r&a& ”.&ai | Rl ] g K | I | | Akl | | ¥ | | iy | — u

e o e e TR AT TR IR YR AW R e TR

2-2

H o



™

vat ra s et S i 8 T Y & S $

LT e T s ot e a7

3 ~_.-q
s -l

and correspond to an angular resolution of 22 arcseconds with the 30-
centimeter telescope, and 4.5 arcseconds with the 1. 5-meter telescope.
Sensitivity of the detectors is enhanced by pumping on the liquid helium,
which produces a temperature drop to less than 2°K. Filters provide
response in the regions from 10 to 12 micrometers and 17.7 to 25.0 micro-
meters. The relative detector-dewar response curves are shown in
Figures 2-" and 2-3. Cooled apertures inside the dewar limit the field

of view so that the detectors see primarily mirror surfaces. The

detectors may not be ased simultaneously.

Since the instrument incorporates a chopper which chops alter-
nately between lunar and sky radiation, the detector output is an ac
signal. The preamplifiers for the two channels are mounted directly to
the dewar. From the prcamplifier, the signal goes to an amplifier
designed for this system by Dr. F. J. Low of the University of Arizona.
A phase signal transmitted from the chopper to this unit also allows the
amplifier to synchronously rectify the signal, The resultant dc voltage,
which nearly represents the signal caused solely by transmitted radia-
tion, is recorded by a Hewlett-Packard Data Acquisition System. The
system consists of a scanner, digital voltmeter, clock, paper printer,
counter, and magnetic tape recording system. For all of the data

reported here, an integration time of 1 second has been used.

A separate, custom-built unit allows synchronization of the
camera with the chopper. At the moment that a photograph is taken,
the time and a frame number are recorded on the film by a unit attached
to the camera back. This information is also simultaneously recorded

on the paper printout and magnetic tape. The radiometer as attached

to the 60-inch SSL-LPL telescope is shown in Figure 2-4,
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3. THE OBSERVATIONAL DATA

Regular observations with the infrared radiometer began in
December 1970, Since that time, data have been obtained in numerous
sessions. These data are from both the Huntsville and Arizona locations
and are in the 10- to 12-micrometer band. For sites having reasonable
atmosperic transmission at 20 micrometers, the longer wavelength is
to be preferred, since the major portion of radiation from the cool lunar
nighttime surface is at these wavelengths. However, because of the
low altitude and relatively humid climate at Huntsville, it is dubious
that any benefit would be gained by observing from Huntsville in 'he
17.7- to 25. 0-micrometer band. The Arizona site, which is at an
altitude of 8, 500 feet in the Catalina Mountains near Tucson, is more

suited to the longer wavelength band.
For scan data, the observational routine is as follows:

® At the beginning of the evening, a single point on the
lunar surface, usually near the subsolar point, if
possible, and in a maria region, is selected for
measuring atmospheric attenuation., This ""extinction
point' is observed first.

® A series of calibration points, located away from the
terminator or in rough highland regions, is observed
next. These points are otherwise widely distributed
over the surface,

® The acquisition of scan data is begun next. Usually,
these are drift scans, i.e., the diurnal motion of the
Earth is used to carry the lunar image past the
detector. For shifting of the scans in declination,
either the lunar motion in declination is used, or the
scans are shifted by incremental movements of the
telescope in declination., The latter is somewhat
awkward, and spatial resolution is sometimes improved
by quickly rescanning lunar regions. A portion of sky

P )
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is aiways included at each end of each scan. At least
one photograph is recorded during passage across the
illuminated portion. The extinction point is periodi-

cally measured during the scanning period.

® At the end of the scanning session, the calibration
points are measured again.

® Finally, a measurement is made of the extinction
point.

During periods in which extinction or calibration points are being
measured, a sky background reading is taken with Soth radiometer
beams. For each type of observation, a manually set code is entered
on the tape. This code includes the wavelength (10 or 40 micrometers),
the site (Huntsvilie or Arizona), the lunar calibration point for a cali-
bration observation, the type of observation (extinction point, calibration
point, sky reading, or scan data), and the date. Recording of this code
is effected with the taking of a photograph, which is done for each type
of observation. Photographs during scanning are necessary in order
to carry out the astrometric analysis. The photographs of the extinction
and calibration points are essential later in the determination of tem-
peratures of these points from the Saari and Shorthill data, Photographs
taken during the sky readings provided an additional check against stray

radiation. The time is periodically recorded automatically on the tape.

The reader will note that separate observations are made for
extinction and calibration points. These could be combined, but the
opportunity of holding one of the two basic independent variables (source
temperature or air mass) constant for each determination affords
greater accuracy. In determination of the attenuation coefticient,
widely varying air mass values, but constaat source temperature, are
desirable; in determination of the calibration constant, a single air
mass with widely varying source temperatures yields the most accurate

value. Since the scans cross illuminated portions of the disc for which
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the data of Saari and Shoe:thill may be interpolated, the separate
measurement of extinction or calibration points might even be ignored
completely. However, use of this scan data for calibration and extinc-

tion correction would needlessly complicate the data reduction routine.

Table 3-1 presents a summary of the observational data obtained
to date. Included in this table are the date, wavelength region of the
observations, the site (Huntsville or Arizona), the number of scans
recorded, and the solar selenographic colongitude. The reader will note
that these observations are incomplete, which is due to difficulties with

the instrumentation or the weather.

Planetary data have also been obtained. Sufficient data for a
low resolution thermal map of Jupiter were recorded on May 31, 1971,
at Huntsville in the 10.0- to 12.5-micrometer band. Measurements
for higher resolution thermal maps of Mars were obtained in the same
band at the Arizona observatory, These data were recorded during
the recent favorable opposition, on September 11 and again on September

16, 1971. Time has not yet allowed reduction of these data.

Radiometric measurements of Saturn were also attempted during
September 1971, from the Arizona staticn. The planet could not be
detected in the 10.0- to 12, 5-micrometer band due to noise. A later
noise analysis indicaied an upper limit brightness temperature of 100°K.
This is in agreement with the previous estimate of 95°K for the planet

(Ref. 1£).

3-3
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TABLE 3-1. SUMMARY OF LUNAR SCAN OBSERVATIONS

SOLAR
DATE WAVELENGTH NO. |SEL.
(GREENWICH) (u) SITE | SCANS |coL. REMARKS
12/18/70 10 to 12 H 13 Tape unit malfunction
12/24/70 10 to 12 H 16 Tape unit malfunction
1/16/71 10 to 12 H 70 143° | Darkside data
1/20/71 10 to 12 H 12
2/6/71 10 to 12 H 34
2/15/71 17 to 25 A 6
2/19/7 10 to 12 A 33 No photos, but recoverable
5/31/71 10 to 12 H 50 No darkside data, 13
Jovian scans
6/1/7 10 to 12 H 50
9/11/71 10 to 12 A 45 168° | Darkside data, 8 Martian
scans
9/12/71 10 to 12 A 62 181° | Darkside data
9/13/7 10 to 12 A 19 Darkside data
9/14/M 10 to 12 A 37 Darkside data, 10 Martian
scans on 16th
10/30/71 10 to 12 H 55 No darkside data
11/4/71 10 to 12 H 87 Full moon data
11/8/71 10 to 12 H 62 116° | Darkside data
11/8/7 10 to 12 H 50 154° | Darkside data
11/11/7N 10 to 12 H 30 Darkside data
11/14/7 10 to 12 H 40 206° | Darkside data
11/21/1 10 to 12 H 7
11722/ 10 to 12 H 21
1/24/72 17 to 25 A 56 No uarkside data
1/25/72 10 to 12 A 71 No darkside data
1/27772 10 to 12 A 72 No darkside data
9/26/72 17 to 25 A 44 Darkside data
9/29/72 10 to 12 A 4 170° | Darkside Data
9/30/72 10 to 12 A 59 182° | Darkside Data
10/1/72 10 to 12 A 55 194° | Darkside Data
10/2/72 10 to 12 A 33 207° | Darkside Data
NOTES: A - Arizona Data, H -~ Huntsville Data
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4. DATA REDUCTIODN

4.1 REDUCTION OF THE MEASUREMENTS TO BFIGHTNESS
TEMPERATURES

For several reasons it was decided to effect aksolute calibra-
tion of the entire radiometer .telescope system upon the Moon. These

are as follows:

® Fresnel diffraction occurs at the baffling apertures
inside the dewar (Ref. 17). Diffracti: affects the
focusing of the radiation upon the detector and there-
fore the geometrical factors occurring in the equations
for absclute calibration and radiation measurement.
Even with an electrcnic computer, calculation of these
diffraction-modified constants would be arduous in
practice.

® The precise alignment of the dewar-detector syster.
with the telescope required for laboratory calibration
would be difficult to achieve. Inaccuracy of this align-
ment would degrade the accuracy of the results.

o Calibration of the entire radiometer-telescope system
upon the Moon elirninates the necessity of knowledge
of optical parameters such as emissivities and mirror
reflectivities, The geometrical arrangement may be
any whatever, The method is also less sensitive to
errors in atmospheric attenuation correction.
The recder may recall that relative radiometry is not uncommon in
astronomy. It has been used, for example, by Saari and Shorthill

(Ref, 4) and by Low (Ref. 6).

Our procedure is the determination of an absolute calibration
constant for the entire telescope-radiometer system. The extensive
data of Saari and Shorthill, after correction for the local =olar zenith

angle and distance, are suitable for this purpose. At each observing
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session a series of calibration points, including an extinction point,

is selected on the lunar surface. These are selected in maria regions
well rem ved from the terminator. This is done since the temporal and
spacial variations in brightness temperature are the least in these regions,
and the approximate procedure used for solar zenith angle correction is
invalid in .ne terminater cegion. In addition, use of warmer regions for
calibration produces smaller fractional errors in the measured tempera-
tures, as shown by examination of the factor [ D(T¢)] !, which appears

in Equations 6-5 and 6-6. Otherwise, these points are widely selected

cver the illuminated surface.

The signal voltage V, due to detected lunar radiation is reiated

to the lunar surface temperature T, by

N
Vm = Gt 5 TalM) pp’ (N) €M) Rg(A) N\, T} dh . (1)
c

The constant GT is a geometrical facior which depends upon telescope
and detector system parameters such as telescope collecting area, focal
length, detector and baffling aperture sizes and separation. Variation
ot GT with wavelength due to diffraction effects is small. All other
pararmeters on the right side of Equation 4-1 are wavelength dependent
and are included in the integrand. These are the atmospheric trans-
mission T3(A), the mirror reflectivity p(X), the lunar surface emis-
sivity em(\), the responsivity Rg{\) of the complete detector-dewar
system including the filter and optical window, and the blackbody radi-

ance N(\, Ty,) corresponding t> the lunar surface temperature, Tp,.

It is anticipated that the quantities pp(\) and em(k) will remain
fairly uniform over the wavelength ranges cf interest (10.0 to 12.5

micrometers and 17 to 25 micrometers). Although there is some
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variation of T; with N in the 10.0-~ to 12.5-micrometer band, this wave-
length region corresponds to an excellent atmospheric ""window'. The
window in the 17- to 25-micrometer band is not nearly as good, and the
variation of T4 with A is more prounounced there. If average values for
PT» €ms and T4 over wavelength are used, these quantities may be taken

outside the integral and Equation 4-1 may bhe rewritten as

Vem = G FTS €m Rmax ;a O(Tw) . 4-2)

Here Ry 3x represents the maximum value of Rg(\) in the wavelength

interval, and the function Q(T,,) is defined by

® Ry ()

ATe) = S‘ N(A, Tp) d\ (4-3)

0 Rmax

and is seen to be the integrated lunar surface radiance weighted by the

normalized radiometer responsivity,

The infrared atmospheric absorption spectrum is largely
characterized by molecular absorption bands which are composed in
turn of mulititudes of absorption lines. In order to facilitate the calcu-
lation of the infrared transmission of gases over broad wavelength
regions band model approximations have been devised. Two important
models consider the absorption lines in the band as uniformly spaced
(Elsasser model, Ref. 19), or as randomly spaced (Goody model,

Ref. 20). These models have been further simplified in the case of
weak lines, or of strong lines. Since the wavelength region from i0.0
to 12,5 micrometers corresponds to an excellcnt window, ¥, has been
represented in this band by the weak line case (Ref. 21) for these models

with air mass as argument. Here 7, is given by
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T, = exp (-k; X) , (4-4)

where the constant k, is an extinction coefficient and X is the air mass.
The stronger attenuaticn in the 17- to 25-micrometer region is dominated
by H2O0 absorgption, which consists of randomly spaced lines. Conse-
quently, for this band, the strong-random band model approximation
(Ref. 21) has been chosen, This approximation predicts the functional

form of ;a to be
Ta = exp (-k, NX) , (4-5)

where k, is the attenuation coefficient and the air mass is again used
as argument. Although the band-model approximations for both bands
have been incorporated into the computer-reduction program, oniy data

in the 10.0- to 12.5~-micrometer band have been reduced to date.

Because of the radiation chopping method employed, the actual
signal voltage V' recorded during lunar observeation is very nearly
equal to the signal voltage Vi, due solely to detected lunar radiation.
However, due to slight imbalances in the two radiometer beams, a
residual background cormponent AVy may be present in V ', Periodic
sky observation with both beams provides this component. The cor-

rected signal V  is then obtained from
Vm = Vm' -AVb . (4-6)
Since the variation of Zm with the lunar topography is not known,
the product GT ;T3 Em Rmax in Equation 4-2 may be represented by a

single symbol., Let

K = G FTS-G_m Rmax . (4-7)

4-4
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After substitution of Equations 4-6 and 4-7 into Equation 4-2,

Equation 4-2 becomes
V' -AVE = K7, Q(T) - (4-8)

Equations 4-8, and 4-4 or 4-5, and the definition of Q(Tm,) given by
Equation 4-3 are the basic relationships used in reduction of the meas-

urements to temperature values.

In order to effect absolute calibration and to facilitate deter-
mination of the extinction coefficient, the lunar surface reference point
temperatures are needed. These are read from the Saari and Shorthill
data and are corrected for differences in local solar zenith angle and

the solar-lunar distance. At the lunar surface, the condition

Absorbed Flux conducted Radiated
= . +
solar flu: inward flux

must be met. Symbolically, this condition is expressed by

cos Zg - R
(1 - A) FQTZ— = Fote€me Ty (4-9)
©

where
A - lunar albedo

Fg - total solar flux at a distance of 1 A. U, (the solar
constant)

Zy - lunar local solar zenith angle
de - solar-lunar distance, A.U.

F. - inwardly conducted flux.

e e AERTE |

i e i s bR A KSR NIRRT

B N

Do o s e a s =




lnm’ L--J

¥

BT gt - ma o - L o4 L

\eey o et b
(IR |

For lunar daytime regions not near the terminator, previous studies

(Ref, 22) indicate that the term F. is small. In this case

cos Zg -

(1 - A) Fy 3 % €mo Tm' - (4-10)

The quantity cos Z, may be expressed in terms of the orthographic
coordinates £, n ; {, of any point and the coordinates §4, 1o Lg»

of the subsolar point by

ra AN ol 4 Paman o L e

cos Zg = gg@ +1'|r|e+ g;a . (4-11)

Under two different conditions of illumination, Equations 4-10 and 4-11

indicate that the lunar surface temperatures T,y and T, are related by

1
E€e2 t MMez + Llez |* |de;
Tz = T — . (4-12)

ma
E€e1 T MMez T Loy de2

For each calibration point or extinction point, temperature values are
read from the Saari and Shorthill charts having phase angles straddling
the phase angle of the observations., These are corrected to our condi-
tions by Equation 4-12. The difference in these corrected values is
usually small (a few K degrees or less), and an interpolation over phase
angle is used to obtain the final value. Presently this procedure has not
been incorporated into the computer-reduction program, but rather is

done by hand.

The atmospheric attenuation coefficient is obtained as the first
stage of the computer.reduction program. Let TR be the lunar surface
extinction point temperature. Expressions 4-4 and 4-5 may be substituted,

in turn, into Equation 4-8 which is then rewritten as

4-6
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VR' - AVp
—_— . (4-13)
ln[ :(T)] ky X+ inK

for the weak line model, and as

SNPREPINS S &1 TLE T TN

VR' - AVyp
——————| = «k,NX + In K 4-14
In [ Q(TR) ] 2'\/- n ( )

Ty

for the strong- random line model. Observations of the reference point
should be made for various values of air mass X. A straight line fitted
to a plot of the left side of Equation 4«13 as a function of X yields -k,

as slope for the weak line model. For the strong-random line model,

-k, is the slope of a straight line fitted to a plot of the left side of
Equation 4-14 as a function of NX. Note that in both cases the plots

yield fn K as the X = 0 intercept. Howeve., use of nearly simultaneous

multiple calibration points az described above is to be preferred for the

determination of K.

Observation of a single calibration point of known temperature T,
is sufficient for the determination of K. A more accurate determination is
possible if several points are measured. The well-known method of least
squares may be used to fit the observations of V.' = AV} as a functiown of

T, Q(T.) with a line passing through the origin. The value of K is then

given by
N ]
), Tai Q(Tci) (Vi = AVp)
i=1
- 4-15
K N ( )
Y, lrai QT
i=1
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for N calibration points. Because of a possible slight variation of K,
values of this calibration parameter are obtained from observations at
the beginrning of an observing session and again from observations at
the end of the session. The value used in the data reduction is inter-

polated from these observations.

Note that a constant value for K is assumed in determination of
the attenuation coefficient. Although this may produce a small error in
this coefficient, only a much smaller error is produced in the determined
temperature values, since the measurements are relative. Interpclation

of the K values still provides a good correction.

The value of K obtained is correct, regardless of diffraction
effects, and the telescope-radiometer geometry may be any whatever.
The method is also independent of the alignment of the optics, provided

it is unchanged.

The value of Q(T,,), and, therefore, Ty, is then determined

for any unknown point by evaluation of the quantity

Vim = AVy

Q(Tm) = K ’ .
a

(4-16)

Early in the project, in an effort to increase effective resolu-
tion in the advance direction, successive rescanning of the lunar disc
was tried. Trouble with this procedure was encountered due to lunar
surface temperature variations with phase change and atmospheric
transparency variations during the several-hour time period required
for scanning. A procedure, which is based on thermophysical lunar
surface models, was devised for making adjustments to surface tem-
peratures for phase changes which would be valid over small time
periods. This procedure is described in the appendix. In practice,

the maximum amount of the adjustmeni has been about 10 K° with the

4-8
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bulk of the adjustments less than 1 K°. This procedure satisfactorily
solved the phase change problem, but the more significant atmospheric
transparency variation problem remained. Subsequent data have been
taken in sing.e scannings of the lunar disc with a larger number of scans
recorded. However, because of its success the adjustment procedure

has remained in the program.

4.2 THE COMPUTER REDUCTION PROGRAM

The procedure for the astrometric analysis of the data is that
of Ingrao, et al and has been previously described in detail (Refs. 18,
14, and 16). The procedure for reduction of the measurements to
temperatures is presented in Section 4. 1. This section, therefore, pre-
sents only a brief description of the computer reduction program, as

shown in the accompanying f'ow charts.

The data, which is entered on magnetic tape, is divided into
separate files on the tape. Each file consists of an integral number
of records, each of which consists, in turn, of 24 signal values and
a time value (in hours, minutes, and seconds). The files are used
for separation of the types of data recorded, and also to separate the
individual lunar disc scans, For lunar work, four file types are used:
calibration files, extinction point files, sky files, and a data point
file for each disc scan. Each file is identified by 2 manually set code
within the file. After reading these codes, the computer may call the
file when needed. All signal values in each calibration file, extinction
point file, and sky file are averaged by the computer. One of these
files, therefore, constitutes a single observation, and the sky files

are used for the correction of the calibration and extinction point files.

A summary of the entire reduction program is shown in
Figure 4-1, The detailed flow charts are divided into eight sheets,

Five of these sheets present the basic program, and the three remaining

. 4-9
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sheets outline routines which are used repeatedly in the program. These

routines will be described first, followed by a description of the main

program.

The topocentric ephemeris routine is outlined in Figure 4-2.
The Ephemeris (Ref. 23) presents data as geocentric quantities, and this
routine is used for conversion of these data to topocentric quantities.
In the flow charts, the numbers on the blocks show the order of the
calculations, and the arrows show the flow of quantities. The routine
is entered with the ephemeral data, the observer's coordinates, and
the .‘me. Interpolation of the ephemeral data is followed by calculation
of the geocentric hour angle and zenith angle, the observer's position
angle, and the topocentric parallax, Other auxiliary quantities are
calculated which allow translation of the geocentric lunar coordinates
and distance to topocentric values. The outputs of this routine are
the topocentric librations in selenographic longitude and latitude, the
topocentric lunar position angle, the topocentric lunar distance in units

of the lunar radius, and the topocentric coordinates of the lunar center,

The topocentric coordinates routine is shown in Figure 4-3.
This routine describes the calculation of topocentric hour angle and
declination for any point on the lunar surface from the input orthographic
coordinates., The quantities input to the routine are the lunar orthographic
coordinates £ and n, topocentric ephemeral data computed in the topo-
centric ephemeris routine, the sine and cosine of the observer's latitude,
and the differential refractive index between the visual and infrared
wavelengths., The first portion of the rcutine transforms the ortho-
graphic coordinates in succession through three other rectangular
coordinate systems. These coordinate systems are described fully in
Reference 16. This is followed by conversion to topocentric hour angle
and declination, These are the coordinates of the photographed point.

The final conversion of the routine transforms these coordinates to the
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coordinates seen by the infrared detector by taking differential refrac-

tion into account,

The air mass routine, shown in Figure 4-4, takes as input these
topocentric detector coordinates and the sine and cosine of the observer's
latitude. A calculation of the secant of the zenith angle is performed,
and this is followed by a correction for curvature of the atmosphere
and refraction. Correction for altitude is not needed for the method

of atmospheric attenuation correction used in the program,

The basic program is outlined in Figures 4-5 through 4-9.
The first step is the calculation of the attenuation coefficient, shown in
Figure 4-5. The compute: selects all of the extinction point files and
corresponding sky files. Also input are the ephemeral data, coordinates
describing the observer location, and the lunar orthographic coordinates
and temperatures of the lunar surface extinction points. The air mass
values for the observations are computed following recourse to the
topocentric ephemeris routine, the topocentric coordinates routine,
and the air mass routine. The attenuation coefficient k, or k, is
obtained by fitting a line by the least squares method to the data
according to Equation 4-13 for observations at 10 micrometers and
according to Equation 4-14 for observations at 20 micrometers. These
equations correspond to the weak and strong random line absorption

band approximations, respectively.

The next step of the program is j:he calculation of the calibration
constants, This is shown in Figure 4-6. Two calibration constants
are calculated, one each for the beginping and end of the evening.
Corresponding times are also obtained for the beginning and end of the
evening, so that each value of the calibratior constant used in the program
may be time-interpolated. This portion of the program is entered with
the calibration and sky files for the beginning and end of the evening, data

describing the location of the observer, and the lunar orthographic

4-14



INPUT sin ¢', cos ¢', hp, §p

CALCULATE sec Z; BY
sec ZD 3
(sin ¢' sin 8y + cos ¢' cos §p cos hp) ~*

OBTAIN X FROM

X = sec Iy - 0.0018167 (sec Zp ~ 1) - 0.002875 (sec Zp - 1)?
-0.0008083 (sec Zp - 1)°

QUTPUT X

FIGURE 4-4, AIR MASS ROUTINE
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coordinates and temperatures for the chosen lunar surface calibration
points. Air mass values are computed following use of the topocentric
ephemeris routine, the topocentric coordinates routine, and the air mass
routine. The attenuation coefficient obtained in the proceding step is
used with the air mass values for determination of atmospheric trans-
mission values. The values of K are next obtained by evaluation of
Equation 4-15. The corresponding times are averages over the times

of the calibration files.

Each lunar disc scan is handled separately; Figure 4-7 shows
the first phase of the scan reduction., This phase describes the calcu-
lation of the topocentric coordinates of the object points in the scan.
The section begins with the calculation of the topocentric hour angle
and declination coordinates of the detector field at the times of the
photographs in the scan. If there is only one photograph, the program
assumes no telescope motion. If more than one photograph has been
recorded, the program calculates the rates of telescope motion in
hour angle and declination, with the assumption that these rates are
uniform. From each set of coordinates, residual distance values are
calculated, and these are tested for erroneous coordinates., If any
such point is found having a residual distance from the predicted posi-

tion more than 10 arcseconds, this point is rejected and the procedure

is again performed with the remaining points. Finally, the data are
tested for telescope motion by comparison of the derived rates with the
standard deviations in these rates, as obtained from the calculated
residuals. For no telescope motion, the topocentric coordinates during
the scan are taken as averages of the coordinates computed from the )
photographs. If telescope motion is included, the topocentric data point

coordinates are computed from their times and the derived motion,

T T

Rt

Figure 4-8 shows the calculation ~f the orthographic coordi-

nates of the object points and their temperatures from the observational
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data. The transformation from topocentric coordinates to lunar ortho-
graphic coordinates is not a strict reversal of the topocentric coordinates
routine, since the direction to an object point is known and not its distance.
After calling the topocentric ephemeris routine, the topocentric coordi-
nates of an object point are transformed through three successive sets

of rectangular coordinates to a set xqg, yo,» zg. This system has its
origin at the lunar center, with the z, axis passing through the observer,
the yo axis in the plane of the north lunar pole, and the x, axis directed
westward. The coordinates calculated are of the intersection of the

line of sight with the x,, y, plane. By assumption of a spherical Moon,
the coordinates x, y, z of the intersection of the line of sight with the
lunar surface in the x5, yo, zo system are obtained. An auxiliary
quantity r, is calculated and provides a test for the intersection of

the line of sight with the Moon. Ii, as a result of this test, the line

of sight does not intersect the Moon, the astrometric calculation is
stopped and the associated signal value is added to the values of sky
background. For points on the lunar surface, the orthographic
coordinates are obtained by transformation from the coordinates

X, Vi 2.

The readings of sky signal at each end of a scan are treated
separately. Each of these groups is averaged, and an average time is
computed for each, These values are then used for performance of a
linear interpolation of sky signal throughout the scan, which is used
for the lunar signal correction. After calling the air mass routine, the
atmospheric transmission value at each object point is computed. The
final step of this phase of the program is the calculation of the temperature

by Equation 4-16. The value of T is obtained from the function Q(T) by

a recursive routine. The temperature adjustment previously described

is then calculated.
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From quantities already determined, it is convenient, at this
time, to calculate additional quantities which may be useful for a future
study of directional effects of illumination and reradiation. Since the
radiometer includes a facility for photometry in the visual region, con-
sideration of scattering of sunlight from the surfzce is included. Solar
heating is primarily due to the solar altitude, and heat radiation may
depend upon altitude. Scattered sunlight depends also upon the phase
angle and azimuth difference. The calculation begins with the ortho-
graphic coordinates of the subsolar and subobserver points being evalu-
ated, as shown in blocks 3 and 7 of Figure 4-9. These coordinates,
together with the orthographic coordinates for each object point, are
used for the calculation of the altitudes of the Sun and Earth, the phase
angle, and the difference in azimuth between the Sun and Earth at each

object point.
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5. RESULTS

To date, the computer reduction has been completed for data
recorded on fourteen evenings in 1971 and 1972. Two of these sets may
contain too few measurements to carry beyond the computer reduction
stage. In two other sets the data were degraded by clouds. The result

of the remaining ten sets are presented in this section.

The computer printout of a typical lunar scan is shown in
Figure 5-1., The columns from left to right show ti¢. time in seconds,
the topocentric detector hour angle and declination in radians, the lunar
orthographic coordinates, £, n, and {, the temperature, the adjusted
temperature, the air mass, and four angular quantities measured at
the observed point in radians. These are the angle between the Sun
and Earth, the solar zenith angle, the Earth's zenith angle, and the

difference in azimuth between the Sun and Earth.

The results of the project are generally too extensive for
inclusion of this form of printout for the entire mass of data. A
convenient form for presentation is as a set of isothermal contour maps.
Such maps have been constructed by hand from the data of November 5,
and 8, January 16, September 11, 12, and 14, 1971, and September 29
and 30, and October 1 and 2, 1972, These maps are shown in Figures 5-2
through 5-11. The data of the September and October evenings were
recorded with the 1.5 meter telescope in Arizona; the other three
sets were recorded with the 0.3 meter telescope in Huntsville. Measure-
ments for these maps were made in the 10.0- to 12, 5.micrometer band.
and the number of data points used for each full disc map is of the

order of 4, 200.

For the Huntsville data, the detector size of 0.5 mm diameter

indicates the maximum resolution at 22.5 arc seconds,
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Because of chopper misalignment, this may be as high as 45 arc
seconds. Due tn this cause and also limited optical quality, the maxi-
mum achievable resolution with the 1.5 meter Arizona telescope is

probably about 10 arc seconds.

As yet the 1.5 meter telescope resolution, although approacked,
has not been been achieved in construction of the maps. The map
resolution is limited by data point separation. The drift scan method
of scanning and the integration time of one second produce a data point
separation in the scan direction of 15 arc seconds. The data point
separation in the advance direction depends upon the number of scans,
which in turn depends upon the time available for scanning. If several
hours are available, about 60 scars may be recorded. In this case
the data point separation in the advance direction is 30 arc seconds.
The effective resolution area drawn on the maps is based upon the

number of data points indicated.

The reader may note somewhat greater structure in the maps
constructed from the Arizona data. This is due largely to the 5 times
smaller angular detector size with this telescope. The Arizona data

are also of better quality.,

Many areas of infrared signal enhancement have been noted in
the data of the dark lunar surface. Because of the presence of noise in
the data, these must be viewed as being due to noise fluctuations as
well as true lunar nighttime surface anomalies. As part of this project,
a study was carried out to identify, as best as possible, true lunar
nighttime surface anomalies. ..s the first step, the locations of all
areas of signal enhancement corresponding to a detected temperature

increase of at least 0.5 K° for all data sets were plotted on the standard

4
i

lunar orthographic grid. The loci of all luna- darkside scans were also

plotted on this same graph. A plot of these locations only is shown in

5-13
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Figure 5-12. While these points cover the entire eastern quadrisphere of
the lunar suriace, they are not uniformly distributed. Numerous clumps
of points may be identified here and there on the plot. Many of these
clumps are associated with thermal anomalies in the catalog of Wildey,
Murray, and Westphal (Ref. 9). The procedure which was followed

was the establishment of a criterion for the identification of such clumps,
and the assumption that these cluinps are associated with true lunar

darkside anomalies.

It was first necessary to define a criterion for membership of any
point in a cluinp. A study made earlier in the project had indicated
an average size of the anomalous regions of the order of 30 arc seconds
(measured on the sky, fef. 26). For the Arizona data, which constitutes
the bulk of our lunar darkside data, the effective lunar surface area
sensed for any data point is an oblong area approximately 10 arc seconds
wide and 15 arc seconds long oriented parallel to the scan direction.
The membership criterion chosen was that any carndidate point must
lie within 20 arc seconds of at least one other clump member point to be
considered as telonging in the clump. The next step was establishment
of a criterion for the minimum number of points which would constitute
a clump, with account taken of the possibility of scans passing through
a clump which do not show a signal enhancement corresp-nding to the
chosen temperature increase threshold of 0.5 K°, This ¢ 4 happen in
the case of a true lunar surface anomalous area if a signal docrease
occurred as a result of noise or if the area had cocled to a temperature
difference less than the chosen threshold. Let N be the number of points
belonging to a given clump, and let n be the nymbeér of scans passing
through the region which .o not show the threshold increase. The

criterion chosen was that

N-n>3

5-14
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for any clump to be identified as an anomalous region. The locations
of anomalies listed by Wildey, Murray, and Westphal (Ref. 9) were
also taken into account, In their paper, they state that most of the
thermal anomalies they list are based on detection in each scan of
identical scan pairs. The locations listed by these workers have
therefore been counted twice in determinaticn of the total number N

of points. The clumps of points identified by these criteria are shown
in Figure 5-13, Many of these clumps contain eight points or more and

cover a considerable area.

The large number of lunar darkside scans accumulated in the
project offers an opportunity for an attempt to determine the appearance
{shape and thermal structure) of the anomalous areas. Any such deter-
mination must be viewed considering the noise level and the fact that
the data have been taken over various phases, and at best, probably
represents only a crude approximation., For all of the identified clumps,
temperature enhan_ements were read from the data points in scans
passing through the clumps and these were marked on a plot constructed
on the standard orthographic grid. They were then used for drawing of
contours of constant temperature difference above the background.
These contours are shown in Figure 5-14. This procedure of c-mbining
data over various phases assumes that as a first approximation, the
temperature difference structure of an anomalous area remains relatively

fixed in comparison with tk:> absolute temperature structure,

All of these areas are listed in Table 5-1. For each area, the
table lists the coordinates, name, peak temperature difference AT
from the surrounding region, temperature T of the surrounding region
at the time of observation of the peak AT, time of observation of the
peak AT after lunar sunset expressed in lunar days, size in arc seconds,

dates of observation of the area, and existence in the Wildey, Murray,
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and Westphal catalog. Our data seems to be comparable in quality to

theirs, and all of their more intense anomalies which lay in our scan

paths were recorded.

An attempt was also made to find cool anomalous areas in the
October 1, 1972 data which would correlate with data of other nights.
Several candidate areas were noted, but each of these correlated with
data of onlv one other evening. Their existence seems dubious., Our
data indicates that if such areas exist, they are much less abundant

than the warm anomalies,
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6. DISCUSSION OF ERRORS

Since the lunar surface temperatures are location-dependent,

as well as time-dependent, errors in the temperature values are inevit-

ably linked with errors in positioning and time of measurement of the

contours. Hcwever, it is convenient to attempt separate treatment of

these cases.

6.1 TIME ACCURACY

The time error of measurement of an individual value is negli-

gible. However, it should be noted that the recording of data sufficient

for a single contour map may require several hours to accomplish.

6.2 SPATIAL ACCURACY

Probably the greatest uncertainty in the positioning of the con-

tours occurs in the focal plane mirror alignment, which is done just

prior to observation.

to produce a probable error of 0,005 lunar radii.

For the data presented here, this is estimated

Error also arises

in the identification of the photograph coordinates, and this is esti-

mated here as 0. 004 lunar radii.

The astrometric calculations are

done tu the accuracy of the data i the Ephemeris (Ref. 23), and the

error should .be an order of magaitvte smaller,

In summary, the con-

tours are estimated to have a probable spatial error of 0. 006 lunar

radii, and a maximum spatial error of 0.018 lunar radii.

6.3 TEMPERATURE ACCURACY

Tmplicit differentiation of Equation 4-16 yields the fractional varia-

tion in the measured temperature Ty, as a4 function of variations of the

parameters.

This differentiation gives

s
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L
- dTm dVm d1a dK
EE Tm - D(Tm)( v - ‘1‘,'a -~ K (6-1)
g‘; where
L)
Q (aQ\™

1 D(T) = T(dT) . (6-2)
% 2 The value of dK/K is obtained by differentiation ot Zquation 4~15.
. To obtain a fairly simple expression, it is necessary to assume that all
. ; lunar calibration points have idertical temperatures and that the signal
. and atmospheric transmissimn values are the same. This is not an
: _ unreasonable assumption for this type of order-of-magaitude calcula-
o tion. If the calibration observations are all recorded at approximately
i the same time, the transmission values will, in fact, be approximately
o identical. The quantity dK/K is then given by
- - dVei dTe; dt

ili:-iz c1-__l_Z 1 ci _drac (6-3)
“ » K N VC N D(Tc) TC Tac -
. . for N ol..ervations., The subscript ¢ refers to these calibration point

- observations., Combination of Equations 6-1 and 6-3 yields

[ Ny |

Tm m vm'NZJ Ve  Ta T N &D(Te) Te |

- (6-4)

i
3

FYRS |

[ 2T

|

Equation 6-4 may be used to obtain an expression for the maxi-
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mum fractional error in Tm. It is
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(6-5)

Here, each term in the brackets on the right side is the maximum frac-
tional error in that quantity. The revlacements Z 1AVeilmax = NlAVe]

and Z IATcil .x = NIAT ! have been made.

If the probable error of measurement is defined as the standard
deviation, the square of the probable fractional error in the resultant
temperature will be the sum of squares of the probable fractional errors
in the components for random error distributions (Ref. 24). In Equa-
tion 6-4, each deviation dV¢; and dTc; must be treated as an individual

component. The probable fractional error in Tp, is then

(M

2 2 2 2
ATy AVm 1 (AVc) AT 1 1 ATc
( Tm) ’D(Tm)(vm) tN\ve/ tAT./) *N|DiTa Te
prob
(6-6)

Here, the replacements }(AVe;) o = N(AVC) and ) (ATcy)prab = NIATe)?

have also been used. The quantities AV_ and Al., as above, represent

average values for these errors. Each term in the braces on the right

side represents the square of the probable fractional error in the quantity,

The first term in braces represents the noise error during an object
point measurement. The second quantity represents the noise error
during measurement of the calibration points. The third term is the
error in the value of atmospheric transmission. The last term in braces
represents the error in the calibration temperatures. It is of inter-

est to note that the probable error in the determined temperature values

-
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which is due to errors associated with the measurement of the calibra-
tion points is inversely proportional to the square root of the number of

these points for a random distribution of these errors.

The requirement of random error distributions for Equation 6-6
suggests a more detailed examination of the nature of the errors of the
various components. The fractional errors in the signal values are
due to instrumental noise, sky noise, and errors in residual sky back~
ground correction., The first two sources are random, and the last
includes both random and systemati: variations. However, the errors
in the residual sky background correction should be small because of
the simultaneous background correction employed. The errors in atmos-
pheric transmission are due to random fluctuations, systematic error
due to error in the determined attenuation coefficient, and systematic
error inherent in the band model approximation employed. Since cali-
bration is effected on the Moon, systematic errors in the computed
transmission will tend to cancel. In addition, the excellent quality of
the 10- to 12-micrometer window will result in small transmission
errors for data taken in this region. The largest cause of error lies
in the calibration temperatures, T.. Error in these temperatures may

be divided into two sources: error in the Saari and Shorthill data used
for calibration, and error in the approximation used to convert the Saari
and Shorthill temperatures to our observation conditions. Except for
zerc~-point errvor in the Saari and Shorthill data, trial calculation indi-
cates that these errors are largely random. T  error distributions of
the parameters, for which each component in Equation 6-6 represents
the probable error, should, therefore, be largely, although not entirely,
random. This equation is, therefore, approximately correct. Since the
values of the component errors are estimated, additional accuracy of

Equation 6-6 achieved by increased complexity is not warranted.

6-4
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Estimates have been made of the accuracy of the various param-
eters used in the temperature reduction. With these values, Equations
6-5 and 6-6 have been evaluated to obtain an indication of the order-of-
magnitude error to be expected in the temperature values presented.
The author has taken a probable noise voltage equivalent to that signal
voltage for a noise temperature of 105°K. The maximum noise voltage
is taken as twice the probable value. The quantity (AT/r )prob is assumed
to be 0.02 and (AT/T)pax was taken as 0.04. Ten calibration points
were assumed, each having a temperature of approximately 350°K, The
probable error in the calibration point temperatures was chosen to be
8 K°, with a maximum error of 16 K°. This takes into account the prob-
able error of aporoximately 4 K°, indicated by Saari and Shorthill for
their data points at 350°K. The results of the evaluation of Equations
6-5 and 6-6 are shown in Figure 6-1. The curves exhibit 2 minimum
error around 150°K. For very low lunar surface temperatures, the
first term inside the brackets becomes large because of the sharp
decrease in the signal voltage V. In this case, the zame noise signal
value will correspond to a larger temperature difference than at higher
temperatures. For temperaturcs above 150°K, the factor Ty, D(Tw),
which increa.es with temperature, dominates. He™e, thic ciror in the
signal is approximately proportional to that signai. Towarc"\‘s higher
temperatures, the decrease in temperature change for givex; signal

change is insufficient to offset this proportionality,
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7. MEASUREMENT OF THE MOON DURING THE TOTAL
ECLIPSE OF FEBRUARY 10, 1971

Thermal measurements of the Moon during an eclipse are, in
addition to such measurements of the dark surface, essential data for
the distirction between the various proposed surface models. Measure-
ments showing the variation of the absolute surface temperature as a
function of time tiroughout the duration of an eclipse constitute the most
desired information. For maximum utility, such cooling curve obser-

vations should be taken for as many different regiors as possible.

The total lunar eclipse of February 10, 1971, provided an ideal
opportunity for the acquisition of such data. The entire duration of the
eclipse was visible from the Huntsville site and, in fact, throughout
much of the Western Hemisphere. At Huntsville, the Moon was not far
from the zenith during mid-totality, and the weather was cold and

ex'remely clear,

7.1 THE OBSERVATIONS

Because of the limited duration of even the longest total lunar
eclipse, observation by drift scanning the entire disc is not practical.
Therefcre, seven lunar regions were selected for spot measurements in
the 10,0y ~12. 54 band. The orthographic coordinates ior these regions

are shown in Table 7-1, and these regions are also shown in Figure 7-1,

Some time after the eclipse it was discovered that an inadvertent
error had been present in the alignment of the guide telescope used to
set on the regions. When the German-equatorially mounted ctelescope
was swung to the opposite side of the pier during mid-totality, a shift

v -

of approximately 7 1l lunar radii occurred in the lunar surface points
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FIGURE 7-1. LUNAR REGIONS STUDIED DURING THE FEBRUARY "0 T ‘TAL ECLIPSE

7-3

i
O

T L T R

:REmooUdBluy'OF THE ORIGINAL PAE IS POOR,




Lo

et o g < o

P

pm .

- -

measuvred. Such a position shift is manifested chiefly in the temperature-
time curves as an alteration of the width of the curves from those for
single points. An overall narrowing of the:e curves of about four minutes
resulted and this necessitated the time correctic 1 procedure described in
the appendix. The temperature values during eciipse are also slightly
altered by three causes. The difference in eclipse temperatures due to
the difference in eclipse duration and temperatures outside eclipse are
negligible. Lastly, the random setting scatter of approximately 0. 02 lunar
radii about the individual points precludes a detectable temperature
difference due to detailed lccal differences in lunar surface geolo_y.
For each of the seven regions studied, Table 7-1 lists the orthographic
coordinates for the individual shifted points and the coordinates of each

resultant point to which .he time values were corrected.

The radiometer was used as attached to the 30- centimeter tele-
scope at Huntsville. Observations were taken from more than 1 hour
before first contact to approximately 1 hour after last contact. The 10-
to 12-micrometer filter was used with an integration time of 1 second,
The germanium bolometric detector was operated at 2°K with a chop
frequency of 10 Lertz, The chopping was between lunar and sky radia-
tion by the scheme of Figure 2-1. The ac signal was fed through the
same phase ractification amplifier and data acquisition system that is

used for scanning data. The data were recorded only on paper printout.

The sequence of observations consisted of a spot measurement of
the residual sky signal, followed by a spot measurement of each region
in turn, Each spot measurement included a record of 15 printed signal
values. The time was recorded during each measurement. The spot
measurement time of 15 seconds was sufficiently shoit so tkat a signi-
ficant change in lunar surface temperature dia not occur during a mea-
surenient, even in the penumbral stages. Approximately 40 measure-

ments were taker. of each region.
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7.2  DATA REDUCTION AND RESULTS

Since no astrometric analysis was required, data r:dictioa was
sufficiently limited sc that it could be done by hand. For some necessary
quantities which have a smooth variation with time, iabor was saved by
graphing these quantities and then reading off the values of the quantity

for the desired times,

The first step of the reduction was the averaging of the signal
values for each spot measurement. The spot measurements of th=
residual sky background were plotted as a function of time, and a
smooth curve was drawn through the points. For eachk object point
time, a value for the rezidual sky background was read from the curve,

and this value was used to correct the assoclated object point rr.2asurement.

From data in the Ephemeris (Ref. 23) and from the kr.vn sice
location, the air mass for the center of the lunar disc was calculate-
and giaphed as a function of time. This calculation included the effect
of the topocentric parallax, An air mass value for each data point tim=
was read from the graph. It is estimated il'at in the worst case, the
error .n atmospheric transmission made by using the disc center was

less than 1 percent,

In order to conveniamly effe.t calibration and to obtain an atmos-
pheric attenuation coefficient, the assumption was made that following
last contact of a Inar eclipse, the lunar surface quickly reaches the
temperature distribution prior to first centact., Data of previous investi-
gators (Ref. 22) support this assumption. Apparently. during a "anar
eclipse, only the few millimeters near the surface are affected. Also,
since the observations were taken in the 10~ to 12-micrometer band,
the weuk line atmospheric absoprtion + d model approxiination should

be applicabie. A plot was made of the quantity ¢n[ Vi /Q(Tm)] as a func-



tion of the air mass, X, for all of the observations cutside of eclipse.
The values of Ty, used in this plot were read frem the data of Saari and
Shorthill (Ref. 4) and were corrected for solar angle and distance by the
.nethod of Section 4-1. A computer-calculated table of the function Q(T)
was useful for obtaining these values. This plot is shown in Figure 7-2,
A line was fitted to the points by the least squares method, and this line
is also s".own in the plot. As shown by Equation 4~13, the slope of the
'ine is th negative attenuation coefficient -k;. This coefficient was
faund to be 0.053. Equation 4-15 was evaluated to obtain K, which was

1ound to be 1,270 volts-cm2-ster. /[watt,

With these values for k; and K and with the graph of air mass as
a smooth function of time, a graph was prepared of the quantity 1/KT,
plotted as a smooth function of time. Values of wnis quantity were then
read from the graph for each data point time, and tkese were multiplied
by the corresponding signal values. Note that according to Equation 4-16,
this produc* is equivalent to the radiance Q(T,,) ever the wavelength band.
The computer-prepared table of Q(T) was then used to obtain the unknown

Tm values.

In any study of the thermal response of the lunar surface to an
eclipse the time is a crucial parameter. Because of the aforementioned
position shift, the time values were corrected so that the measurements

would apply to single lunar surface points. These points were chosen to

be midway between the measured points. For calculation of these corrections

it was assumed that the geocentric angular distance of any lunar surface
point from the anti-solar point in the heavens (the direction of the Earth's
shadow) is the key parameter, since, for given Earth-Sun and Earth-Moon
distances, the insolation of that surfacec point depends solely upon this

parameter. These corrections were obtained by calculating, for each
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region at each data point time, the time shift by which the corrected

point precedes (or succeeds) the observed point in having the same
geocentric angular distance from the anti-solar point. The corresponding
times for the corrected points were then obtained by applying these calcu-
lated time shifts to the data point times. Since these time corrections are
small several simplifying approximations could be made. These approxi-
mations, the mathematical formulation for the time corrections, and the

error of the approximations are presented in the appendix.

The resulting cooling curves for the seven lunar regions are shown
in Figures 7-3 through 7-9. With the exception of region 1, these curves
have approximately identical initial temperatures. It is of interest to note

that region 1, which has a lower initial temperature, undergoes a smaliler

temperature decrease during eclipse. At the lower temperature, this region

would not so severely radiate its heat to space.

For the purpose of fitting theoretical calculations, tabular data are

more suitable. Therefore, these data are presented also in Table 7-2.

7.3 ERROR ANALYSIS OF TEMPERATURES

Equations 6-5 and 6-6 have been evaluated numerically to obtain
an estimate of the accuracy of the eclipse observations. For this evalua-
tion, the same values of the parameters have been used as for the scan
data, with the exception of th.e approximate calibration temperature, the
errors in calibration temperature, and the number of calibration obser-
vations. The following values have been used for the eclipse observa-
tions: T¢ = 390°K, (ATc)prob = 10 K°, (A T¢)max = 20 K°, and N = 31,
These calibration temperature errors reflect the uncertainty of 5 K°

indicated by Saari and Shorthill for their measarements at 390°K.
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The results are shown plotted in Figure 7-10. The probable
error is better than for the scan data, and reflects the larger number
of calibration observations. This error is, in fact, lower than the
uncertainty of any single value used for calibration, and shows the
effect of error cancellation for a quantity derived from a large number

of input quantities having randomly distr.uuted errors.
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APPENDIX. ADDITIONAL CORRECTIONS TO THE SCAN
AND ECLIPSE DATA

SCAN DATA CORRECTION FOR SMALL PHASE CHANGES

We begin with Equation 4-10. At the lunar subsolar point, this

equation becomes

Fo -
1-A) g5 = Eno To! (A-1)
where T, is the subsolar point temperature. Division of Equation 4-10

by Equation A-1 gives

(A-2)

for the same value of d,. We now differentiate Equation A-2 and divide

by this same equation. The resalt is

ATm - . T tzn 2(;) AZ® (A-3)

in the approximate A-notation, This is the relation used for phase
correction over most of the illuminated surface. It may, however, be
placed in a more convenient form. Equation 4-11 gives the relationship
between the lunar solar zenith angle Z and the lunar orthographic coordi-
nates of the Sun and object point. Not that the Sun always lies almost

in the lunar equatorial plane, so th: , = 0, If substitutions in terms

of the selenographic longitudes { and ., 2re made into Equation 4-11,

this equation takes the form

(M

cos Z, = (1 -n*) cos (£ -12,) . (A-4)



A v =

g

-

After differentiation, suhstitution for cos (£ - £,), and use of A, =

-2w AT, this equation becomes

[

(1 - ¥ - cos® Zg)
sin Zg

AZg = % 27 AT (A-5)
in the A- notation. The variable v represents time expressed in lunar
days. We now substitute Equation A-5 into Equation A-3 and use

Equation A~2. The result is

-

2
- T ‘TO °
AT, = 7 5 Tm 1 -n?) (——— -1 AT . (A-6)
2 Tm

For the lunar afternoon surface the minus sign is chosen; the positive

sign applies to the forenoon surface.

The model of Winter and Saari (Ref., 25) is used for phase cor-
rection over the nighttime surface. Their cooling curve may be fitted

with sufficient accuracy by the quadratic
T = 0.0001537 Tyy? - 0.0461 T +C (A-T)

where C is a constant, Differentiation provides

~AT
0.0461 - 0.0003074 Ty, ’

ATm (A-8)

which is the equation used for lunar darkside phasc adjustment of

temperatures.
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Special consideration should be given to the lunar daytime sur-
face near the terminator, for here the assumption of small conducted
flux used in deriving Equation A-6 is invalid. The observational data
indicate that near lunar sunset the surface temperature gradient

-dT,,/dZ, reaches a maximum value of approximately

’ (A"g)

dTm _ 4000 K-
) © 2n radian
max

az,

and that this value is independent of selenographic latitude. The corre-

sponding temporal gradient is obtained from

ATm AT A
: m - | m Zo (A-10)
AT AZ, T
max

)max

where the factor AZ,/AT is obtained from Equé.tion A-5. Note that

near the terminator Z_ = w/2. Thus

AT i °K
_8lm - s 2)2 -
( AT ) 4000 (1 - 1) lunation (A-11)
max

The temporal gradient indicated by Equation A-6 reaches this value

at Ty = 209°K which is independent of . On the darkside, the temporal
gradient given by Equation A-8 has this value on the equator at T\, =
149°K. The oLservational data indicate that bright side temperatures
near lunar suncet do not drop to much less than this value. In this
boundary region near lunar sunset for 209°K > T, > 149°K, a phase
adjustment interpolated between Equation A-6 at Ty, - 209°K and Equa-
tion A-8 at 149°K has been chosen. The adjustment equation for this
region is

1
AT = 66,7 [(1 - m?2)* (T, - 149°K) + (209°K - Tm)] AT . (A-12)

A-3
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Equations A-6, A-8, and A-12 have been incorporated into the
computer reduction program. At present Equation A-6 is used for
the entire lunar forenoon surface, but data sufficient to test the adjust-
ment in the lunar sunrise region has not yet been reduced. The pre-
sently reduced data indicate that this phase adjustment procedure is
satisfactory over the small phase changes for which it has been

employed.

ECLIPSE DATA TIME SHIFT CORRECTION

The approximations made for the calculation of the eclipse
time shifts are that the motions of the Moon in right ascension and
declination were uniform over the time period of the eclipse, that the
spherical astronomical coordinate system could be replaccd by a
rectangular system over the region of sky covered by the eclip =, that
the geocentric librations could be neglected, that the variation of
geocentric position angle during the eclipse could be neglecied, and
that the differential approximation could be used. The consewvuences

of these approximations are examined at the end of this subsection.

During the time period covered by an eclipse, the separation
in right ascension and declination between any lunar surface point and
the antisolar point (the direction of the Earth's shadow) are given very

nearly by the linear expressions

N

@ - apg a»OJra;t ,

and (A-13)

Ag = Bo Bt -
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Here ag, @, 6o, and § are constants. In the rectar.gular approximations
the apparent angular separation r between these points is given by

2

r = {a - arAS)2 cos? 6, + (6 - GAS)Z . (A-14)

Equations A-13 may be substituted into Equation A-14, and the resulting

equation may be solved for t as a function of ¢, a, P é, and r. The

total differential is then taken according to

ot at
4t = 2ae ot 35 %o

(A-15)
Equations A-13 and A-14 are again used for substitution for r in

Equation A-15. If the approximate A-notation is used, the final expres-

sion for At is

-1 .
t = = T ; z
A 2T cosl 5, T [(a cos® &) Ao, + 6 A%,

(& 50 - o) cos? bo (Ao - b A
+ [o) o Q _____QL . (A-l())

da, cost by + 86o + (4% cos? 8, +8%)t

This equation applies in the penumbta. Prior to mid-eclipse the nega-
tive sign is used; after this time the positive sign is chosen. Careful
examination of Equation A-16 reveals that the first two terms in the
brackets give the time shift due to the separation of the lunar surface
points in the direction of apparent lunar motion relative to the antisolar
point, The third more complex term gives this shift due to the combina-
tion of the separation of these points perpendicular to this direction and

the circularly symmetrical shadow of the Earth.



Equation A-16 was applied to the eclipse data point times. The
constants oo and &, were calculated for each lunar surface point from
data in the Ephemeris (Ref. 23). The angular velocities ¢ and 8 are also
from ephemeral data, and the positioned shifts Ao, and AS_ were obtained
from the data of Table 7-1 and the ephemeral data. The time shifts
calculated for the outer penumbral boundary were used for data point
times outside eclipse; data point times during the total phase were

corrected with time shifts computed for the penumbra-umbra boundary.

Error in the time correction due to the approximations used has
been evaluated as follows. The Ephemeris indicates that fractionai errors
due to the nonuniform lunar motion in right ascension and declination
have maximum values of 0.006 and 0.012, respectively. The rectangu-
lar coordinates representation will produce a fractional error of
1/2A6 tan 6 due to the convergence of the meridians at the poles, and
a fractional error of 1/4Aq@ sin § due to the curvature of the declina-
tion circles. The quantities Ao and A§ represent the extent of sky
covered at declination 6. Maximum values of these fractional errors
are estimated as 0,006 and 0.003, respectively, The maximum frac-
tional error due to neglect of the geocentric librations is of the order
of |Af tan £| + |Ab tan b| for librations Af, Ab, and surface point
coordinates ¢, b, and here is 0.004., The variation of the geocentric
position angle causes a maximum equivalent fractional error equal to
the variation in radians and here is 0.008. Finally, the fractional
error due to the differential approximation occurs in the third term in
brackets of Equation A-16. The fractional error due to this approxima-
tion is Ay/2y[(r?)/(r® - y?)], where Ay is the point separation perpen-
dicular to the direction of lunar motion through the shadow, r is the
apparent angular distance from the antisolar point, and y is the value
of r at mid-eclipse. The maximum fractional error due to this approxi-

mation occurs at the umbral boundary and is about 0,020, The maximum

A-6



fractional error due to all sources is 0.060 or 7 seconds in tirne, The
probable fractional error is estimated to be 0.013, which is equivalent

to about 1 second of time.



